Homework 2

Q1- Bayesian Nets

Given the following network, calculate the probabilities below:

- $P(E=1)$
- $P(C=1)$
- $P(C=1 \mid B=1)$
- $P(C=1 \mid B=0, D=0)$
- $P(D=0 \mid A=1)$
- $P(D=0 \mid B=0, E=1)$

$\begin{array}{ll}\operatorname{Pr}(D=1 \mid C=0, B=0)=.2 & \operatorname{Pr}(E=1 \mid C=0)=.5 \\ \operatorname{Pr}(D=1 \mid C=0, B=1)=.4 & \operatorname{Pr}(E=1 \mid C=1)=.1 \\ \operatorname{Pr}(D=1 \mid C=1, B=0)=.6 & \\ \operatorname{Pr}(D=1 \mid C=1, B=1)=.8 & \end{array}$

Q2- Markov chain

Consider a Markov Chain as above. Prove
A) $\mathbf{X}_{\mathbf{t}} \perp \mathbf{X}_{\mathbf{t}-3} \mid \mathbf{X}_{\mathbf{t}-1}, \mathbf{X}_{\mathbf{t}-2}$
B) $X_{t} \perp X_{t-3} \mid X_{t-2}$
C) $\mathbf{X}_{\mathbf{t}} \perp \mathbf{X}_{\mathbf{s}} \mid \mathbf{X}_{\mathrm{t}-2}$ for $\mathbf{s} \leq \mathbf{t - 3}$
D) $X_{t} \perp \mathbf{X}_{\mathbf{s}} \mid \mathbf{X}_{\mathbf{r}}$ for $\mathbf{s}<\mathbf{r}<\boldsymbol{t}$
E) Given $\mathbf{X}_{\mathbf{t}-1}$ and $\mathbf{X}_{\mathbf{t + 1}}, \mathbf{X}_{\mathbf{t}}$ is conditionally independent of all other nodes.

You are not allowed to use the active trail or d-separation theorems (of course $\mathbf{X}_{\mathrm{t}-2}$ separates $\mathbf{X}_{\mathbf{t}}$ and $\mathbf{X}_{\mathrm{t}-3}$). You can only make use of the following:

- Each node is independent of its non-descendants given its parents, and
- The joint distribution can be written as the product of the CPDs.

Q3- Markov Random Fields

Consider the following Markov Random Field over variables $A, B, C, D \in\{-1,1\}$. The potential functions are
$\phi_{1}(A, B)=\exp (1(A=B))$
$\phi_{2}(B, C)=\exp (-B C)$
$\phi_{3}(C, D)=\exp (D-C D)$
$\phi_{4}(A, D)=\exp (1(A \neq D))$
where, $1(\cdot)$ is the indicator function.

$P(A, B, C, D)=1 / Z \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(A, D)$

1. obtain:
a. the unnormalized measure $\tilde{P}(A, B, C)=Z P(A, B, C)$
b. the unnormalized measure $\tilde{P}(A, B)=Z P(A, B)$
c. the unnormalized measure $\tilde{P}(A)=Z P(A)$
d. the partition function Z (using the fact that $\sum_{A=-1}^{1} P(A)=1$.)

- in each case, simply your solution as much as you can

2. Having \mathbf{Z}, obtain the (normalized) distributions $P(A, B, C), P(A, B), P(A)$
3. Derive $P(A \mid B, C, D)$, and $P(A \mid B, D)$. Show that \mathbf{A} is independent of \mathbf{C} given \mathbf{B}, \mathbf{D}.

The Hammersley-Clifford theorem

An undirected graphical model with a set of nodes G and the neighbourhood system N is called a Markov Random Field if

$$
\begin{equation*}
p\left(X_{i} \mid X_{G \backslash\{i\}}\right)=p\left(X_{i} \mid X_{N_{i}}\right) \tag{1}
\end{equation*}
$$

where G is the set of nodes of the graph, $G \backslash\{i\}$ represents all graph nodes except node i, and N_{i} denotes the neighbours of node i.

An undirected graphical model is called a Gibbs Random Field (and its joint distribution a Gibbs distribution) if the corresponding joint distribution can be factorized as the product of functions over cliques (=fully connected subgraphs) of the graph

$$
\begin{equation*}
p\left(X_{G}\right)=\frac{1}{Z} \prod_{c \in C} \phi_{c}\left(X_{c}\right) \tag{2}
\end{equation*}
$$

where C is the set of all cliques (or a subset of all cliques) and X_{c} is the set of variables in the clique c. The Hammersley-Clifford theorem states that if the joint distribution $p\left(X_{G}\right)$ is nonzero for all X_{G}, then an undirected graphical model is a Markov random field if and only if it is a Gibbs random field. In other words, the two models are equivalent.

Q5- Prove the easy direction of Hammersley-Clifford (Gibbs -> MRF)

Show that if the joint distribution $P(A, B, C, D, E)$ is positive and can be written as the product of factors over the graph cliques, as in Eq. (2) above, then each node in the graph is independent of the non-neighbouring nodes given its neighbours, as Eq. (1).

Hint: Dervie $p\left(X_{i} \mid X_{G \backslash\{i\}}\right)$ and $p\left(X_{i} \mid X_{N_{i}}\right)$ and show that they are equal.

Q6- Prove the hard direction of Hammersley-Clifford (MRF -> Gibbs) for a simple graph
 Show that given the conditional independence relations implied by the following MRF graph, the corresponding joint distribution can be written as a product of factors over cliques (and hence is a Gibbs distribution). That is, there exits factors $\Phi_{1}, \Phi_{2}, \Phi_{3}$ such that

$$
P(A, B, C, D, E)=\Phi_{1}(A, B) \Phi_{2}(B, E, D) \Phi_{3}(B, E, C)
$$

Hint:
1- Start by writing $P(A, B, C, D, E)=P(A \mid B, C, D, E) P(B, C, D, E)$ and using the Makov property.

2- Show that if $P(X, Y, Z \mid T)=P(X \mid T) P(Y, Z \mid T)$ then we have $P(X, Y \mid T)=P(X \mid T) P(Y \mid T)$. Using this, prove that $D \perp C \mid B, E$ (notice that the Markov property gives $D \perp(C, A) \mid B, E$.

Not part of the homework!

To see that the Hammersley-Clifford is not so trivial, try to solve question 6 for the following graph. See if you can show that the joint distribution can be factorized as

$$
P(A, B, C, D)=\Phi_{1}(A, B) \Phi_{2}(B, c) \Phi_{3}(C, D) \Phi_{4}(D, A)
$$

given only the Markov property.

Q7- Simple sensor fusion

Suppose we have obtained distance measurements using a LiDAR and an Ultrasound sensor. The LiDAR records a distance of 2.24 meters, while the ultrasound sensor gives 2.13 meters. We assume both sensors' errors follow a normal (Gaussian) distribution, with standard deviations of 1 cm for the LiDAR and 3 cm for the ultrasound sensor. Our objective is to combine (fuse) these measurements to produce a more accurate estimate.
A) Write down the formula for the CPDs $P(L \mid D)$ and $P(U \mid D)$.
B) Derive $P(D \mid L, U)$ and demonstrate that it also follows Gaussian distribution.
C) Give a better estimation as the maximizer of $P(D \mid L, U)$. Compare the error of this new estimation with those of LiDAR and ultrasound in terms of standard deviation. In other words, compare the standard deviation of $P(D \mid L, U)$ with those of $P(L \mid D)$ and $P(U \mid D)$.

Note: To do this you need to know $P(D)$. Not having any information about $P(D)$, you may assume that it has the uniform distribution $P(D)=\epsilon$ for $D \in[-\epsilon / 2, \epsilon / 2]$ and $P(D)=0$ otherwise. Then consider the solution at the limit $\epsilon \rightarrow \infty$.

