
Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

Homework 2

Q1- Bayesian Nets
Given the following network, calculate
the probabilities below:

● P(E=1)
● P(C=1)
● P(C=1 | B=1)
● P(C=1 | B=0, D=0)
● P(D=0 | A=1)
● P(D=0 | B=0, E=1)

Q2- Markov chain

Consider a Markov Chain as above. Prove
A) Xt ⏊ Xt-3 | Xt-1 , Xt-2

B) Xt ⏊ Xt-3 | Xt-2

C) Xt ⏊ Xs | Xt-2 for s ≤ t-3
D) Xt ⏊ Xs | Xr for s<r<t
E) Given Xt-1 and Xt+1 , Xt is conditionally independent of all other nodes.

You are not allowed to use the active trail or d-separation theorems (of course Xt-2

separates Xt and Xt-3). You can only make use of the following:
● Each node is independent of its non-descendants given its parents, and
● The joint distribution can be written as the product of the CPDs.
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Q3- Markov Random Fields
Consider the following Markov Random Field over variables . The𝐴, 𝐵, 𝐶, 𝐷 ∈ {− 1, 1}
potential functions are
ϕ

1
(𝐴, 𝐵) =  exp(1(𝐴 =  𝐵))

ϕ
2
(𝐵, 𝐶) =  𝑒𝑥𝑝(− 𝐵𝐶)

ϕ
3
(𝐶, 𝐷) =  𝑒𝑥𝑝(𝐷 − 𝐶𝐷)

ϕ
4
(𝐴, 𝐷) =  𝑒𝑥𝑝(1(𝐴≠𝐷))

where, is the indicator function.1(·) 

𝑃(𝐴, 𝐵, 𝐶, 𝐷) =  1/𝑍  ϕ
1
(𝐴, 𝐵)  ϕ

2
(𝐵, 𝐶)  ϕ

3
(𝐶, 𝐷)  ϕ

4
(𝐴, 𝐷)

1. obtain:

a. the unnormalized measure 𝑃
~

(𝐴, 𝐵, 𝐶) =  𝑍 𝑃(𝐴, 𝐵, 𝐶)

b. the unnormalized measure 𝑃
~

(𝐴, 𝐵) =  𝑍 𝑃(𝐴, 𝐵)

c. the unnormalized measure 𝑃
~

(𝐴) =  𝑍 𝑃(𝐴)

d. the partition function (using the fact that𝑍
𝐴= −1

1

∑ 𝑃(𝐴) =  1.)

● in each case, simply your solution as much as you can

2. Having Z, obtain the (normalized) distributions 𝑃(𝐴, 𝐵, 𝐶), 𝑃(𝐴, 𝐵),𝑃(𝐴)
3. Derive and . Show that A is independent of C given B,D.𝑃(𝐴 | 𝐵, 𝐶, 𝐷),  𝑃(𝐴 | 𝐵, 𝐷)

The Hammersley-Clifford theorem
An undirected graphical model with a set of nodes and the neighbourhood system is𝐺 𝑁
called a Markov Random Field if

𝑝(𝑋
𝑖
 | 𝑋

𝐺\{𝑖}
) = 𝑝(𝑋

𝑖
 | 𝑋

𝑁
𝑖

)                          (1)

where is the set of nodes of the graph, represents all graph nodes except node𝐺 𝐺 \ {𝑖}
, and denotes the neighbours of node𝑖 𝑁

𝑖
𝑖.
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An undirected graphical model is called a Gibbs Random Field (and its joint distribution
a Gibbs distribution) if the corresponding joint distribution can be factorized as the
product of functions over cliques fully connected subgraphs of the graph(= )

𝑝(𝑋
𝐺

) = 1
  𝑍  

𝑐∈ 𝐶
∏ ϕ

𝑐
(𝑋

𝑐
)                                     (2)

where is the set of all cliques (or a subset of all cliques) and is the set of variables𝐶 𝑋
𝑐

in the clique The Hammersley-Clifford theorem states that if the joint distribution𝑐.
is nonzero for all then an undirected graphical model is a Markov random field𝑝(𝑋

𝐺
) 𝑋

𝐺
,

if and only if it is a Gibbs random field. In other words, the two models are equivalent.

Q5- Prove the easy direction of Hammersley-Clifford
(Gibbs -> MRF)
Show that if the joint distribution is positive and can be written as the𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝐸)
product of factors over the graph cliques, as in Eq. (2) above, then each node in the
graph is independent of the non-neighbouring nodes given its neighbours, as Eq. (1).

Hint: Dervie and and show that they are equal.𝑝(𝑋
𝑖
 | 𝑋

𝐺\{𝑖}
) 𝑝(𝑋

𝑖
 | 𝑋

𝑁
𝑖

)

Q6- Prove the hard direction of Hammersley-Clifford
(MRF -> Gibbs) for a simple graph
Show that given the conditional independence relations
implied by the following MRF graph, the corresponding
joint distribution can be written as a product of factors
over cliques (and hence is a Gibbs distribution). That is,
there exits factors such thatΦ

1
, Φ

2
, Φ

3

𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) =  Φ
1
(𝐴, 𝐵) Φ

2
(𝐵, 𝐸, 𝐷) Φ

3
(𝐵, 𝐸, 𝐶)  

Hint:
1- Start by writing and using the Makov𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) =  𝑃(𝐴 | 𝐵, 𝐶, 𝐷, 𝐸) 𝑃(𝐵, 𝐶, 𝐷, 𝐸) 

property.
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2- Show that if then we have𝑃(𝑋, 𝑌, 𝑍 | 𝑇) = 𝑃(𝑋| 𝑇) 𝑃(𝑌, 𝑍 | 𝑇) 
. Using this, prove that (notice that the𝑃(𝑋, 𝑌 | 𝑇) = 𝑃(𝑋| 𝑇) 𝑃(𝑌 | 𝑇) 𝐷 ⊥  𝐶 | 𝐵, 𝐸

Markov property gives 𝐷 ⊥  (𝐶, 𝐴) | 𝐵, 𝐸.

Not part of the homework!
To see that the Hammersley-Clifford is not so trivial, try to solve
question 6 for the following graph. See if you can show that the joint
distribution can be factorized as

𝑃(𝐴, 𝐵, 𝐶, 𝐷) =  Φ
1
(𝐴, 𝐵) Φ

2
(𝐵, 𝑐) Φ

3
(𝐶, 𝐷) Φ

4
(𝐷, 𝐴),  

given only the Markov property.

Q7- Simple sensor fusion
Suppose we have obtained distance measurements using a
LiDAR and an Ultrasound sensor. The LiDAR records a
distance of 2.24 meters, while the ultrasound sensor gives
2.13 meters. We assume both sensors' errors follow a
normal (Gaussian) distribution, with standard deviations of 1
cm for the LiDAR and 3 cm for the ultrasound sensor. Our
objective is to combine (fuse) these measurements to
produce a more accurate estimate.

A) Write down the formula for the CPDs and .𝑃(𝐿 | 𝐷) 𝑃(𝑈 | 𝐷)
B) Derive and demonstrate that it also follows Gaussian distribution.𝑃(𝐷 | 𝐿, 𝑈)
C) Give a better estimation as the maximizer of . Compare the error of this new𝑃(𝐷 | 𝐿, 𝑈)

estimation with those of LiDAR and ultrasound in terms of standard deviation. In other
words, compare the standard deviation of with those of and .𝑃(𝐷 | 𝐿, 𝑈) 𝑃(𝐿 | 𝐷) 𝑃(𝑈 | 𝐷)

Note: To do this you need to know . Not having any information about , you may𝑃(𝐷) 𝑃(𝐷)
assume that it has the uniform distribution for and𝑃(𝐷) =  ϵ  𝐷 ∈ [− ϵ/2, ϵ/2]  𝑃(𝐷) =  0 
otherwise. Then consider the solution at the limit .ϵ → ∞
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